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Abstract. Scenario-based modeling in live sequence charts (LSC) in-
volves specifying multi-modal inter-object scenarios, in which events can
be mandatory (hot) or possible (cold). In translating LSCs into automata
over infinite words, an intermediate step constructs a kind of transition
system that we call a modal state structure (MSS). Here we present MSSs
as abstract forms of modal scenarios (with both mandatory, possible and
forbidden behavior), which may encode more general patterns than those
inherent in LSC, such as loops, alternatives and breaks. MSSs are essen-
tially automata, in which the notion of temperature is adopted from
LSCs, replacing traditional acceptance conditions.
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1 Introduction

Scenario-based specification and programming is an approach to the modeling
of reactive systems via inter-object interactions [5,14]. The components of the
system interact with each other and with the system’s environment (including
the user). In this approach the inter-object interactions define the behavior of
the system. This is in contrast to the more traditional intra-object approach
(e.g. statecharts [10,11]), where a reactive system is defined through the behavior
of each of its components. The scenario-based approach considers what happens
between the components and the environment, with less emphasis put on the
separate behavior of each object.

Live sequence charts (LSC) [5,14] is a primary example of a visual scenario-
based formalism, which may be used for the specification and the programming
of reactive systems. The language extends classical message sequence charts
(MSC) [15], mainly by being multi-modal, i.e., distinguishing between behav-
iors that may happen in the system (cold) and those that must happen (hot).
LSCs can also naturally express a variety of flavors of behavior and constraints,
such as forbidden scenarios.
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Fig.1. An example: LSC4

We consider here the UML2-compliant variant of the LSC language, defined
in [13], which is slightly generalized and more uniform than the original. A chart
contains objects arranged in vertical lifelines and the messages (events) that they
send and receive drawn as horizontal arrows. Messages are either hot or cold
(mandatory or possible, respectively). Since we are interested here purely in the
inter-object dynamics of scenarios, we disregard conditions that constrain the
state of the system. We do, however, allow trivial True/False conditions (either
hot or cold), in order to specify synchronization points (using the condition True)
and anti-scenarios (using hot False conditions).

The semantics of LSC may be presented via a translation into Biichi au-
tomata [16,13]. As an intermediate step, a process of ‘unwinding’ the chart re-
sults in a structure that is essentially a kind of modal transition system. This
transition system, which we call a modal state structure (MSS), captures the
modal scenario encoded in the chart.

In Sect. 2, we present an example of a live sequence chart and its underlying
MSS. Section 3 provides a definition of modal state structures, and presents
their semantics via Biichi automata. Section 4 extends the interpretation of
MSS to express universality and a similar notion of iteration. A few patterns
of scenarios that can be encoded naturally in MSS are considered in Sect. 5.
Section 6 concludes with some shortcomings of MSS and future work.

2 MSS Underlying LSC

LSC 4, which appears in Fig. 1, is an example of a universal live sequence chart. It
may correspond to an interaction of purchasing a product in a vending machine,
and it captures the following modal scenario. If and when the User sends e
to Ctrl, the latter must respond with es. Then, if User sends e3 to Ctrl, the
mechanical Arm must respond with e4 and Ctrl must update the database by
sending e5. There is no order dependency of e4 and es.
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Fig. 2. MSS4 underlying LSC 4

In order to present trace-based semantics for LSCs, they may be translated
into Biichi automata [16,13]. This involves ‘unwinding’ [16] each chart into states
that correspond to cuts in the chart (which record progress along lifelines). This
results in what we shall call a modal state structure (MSS), which captures
the modal scenario encoded in the chart. MSS 4, which corresponds to LSC4, is
depicted in Fig. 2. Each state of MSS 4 corresponds to a cut in LSCy4, and the
initial state (drawn with a small incoming black triangle) is the minimal cut of
LSC4. The temperature of cuts, either cold or hot, is recorded by temperature
of states (cold states are drawn marked with the letter ‘C’). Outgoing transitions
of each state correspond to enabled events in the corresponding LSC4 cut, each
of which results in a change of cut. We regard an event as holding information
about its source and target, e.g. event = source!message?target, so that this
information is not lost in MSS 4.

In addition to the above, we also designate a set R of restricted events of
MSS 4. These are not allowed to occur ‘out of order” in MSS 4 (i.e., when they are
not enabled), and cause a violation if they do (see Sect. 3). There are few possible
interpretations of LSCs with respect to this set of restricted events [16,14]. We
may interpret LSC,4 in the strict sense, meaning that the restricted events are
exactly the events appearing in the chart, i.e., R = {ej,eq,...,e5}. When one
of these events occurs out of order, it causes a violation. Other events may occur
without causing such violation. Other interpretations, namely immediate and
tolerant (or weak), are discussed in Sect. 3.
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3 MSS and Biichi Automata

A modal state structure (MSS) M is defined by M = (%, S, s9, —, C, R), where
3 is a finite alphabet of events, S is a finite set of states, sg € S is the initial
state, = C S x X x S is a labeled transition relation, and C' C S are designated
as cold states. All other states are hot. R C X is a set of restricted events, which
are roughly events that cause a wviolation if they appear ‘out of order’.

. e .
For s,s' € S and e € ¥, we write s = s’ iff (s, e, s’) € —. Moreover, for s € S

ande € X, s & denotes that there exists s’ € S such that s - s’.

Let s € S be any state. The set of enabled events in s, i.e., events on some
transition outgoing from s, is defined by E(s) = {e € ¥ : s S} We say that
s is dead-end iff E(s) = (. All other events, namely disabled events 3 \ E(s),
are partitioned into two sets: violating events V(s) and indifferent events I(s).
V(s) is the set of disabled events that are also restricted; or, in the case of a
dead-end state, all disabled events. These are the events that cause a violation
(either cold or hot). The rest of the disabled events do not cause a violation, and
are indifferent in state s. More formally we define

_ JR\E() if B(s) # 0

v {2 if B(s) = 0

1(s) = { C\P\E() i E(s) 70
0 it B(s) = 0 .

Figure 2 is an example of an MSS, obtained from the LSC of Fig. 1.

M is interpreted as following. An infinite word o € ¥ denotes a chain of
events, and may designate a trace of an infinite execution. It is accepted by M
(i.e., it complies with M) iff there is an accepting run of M on «. The language
of M, denoted L(M), is the set of o € 3¢ that are accepted by M. A cold
state is stable, while a hot state is unstable and carries a commitment to arrive
later at a cold state. Consider an event e occurring when a run of M is in some
state s (initially in sg). If e is enabled in s, it must lead to some s’ € S such

that s 5 s'. If e is indifferent in s (i.e., e € I(s)) we must stay at state s. And if,
however, e is violating in s (i.e., e € V(s)), a violation occurs. Such a violation is
either hot or cold according to the temperature of s. A hot violation is regarded
as invalid (since a hot state is unstable and carries a commitment to eventually
reach a cold state), yielding a rejection of the run. On the other hand, a cold
violation (also called completion) yields acceptance of the run. If no violation
occurs during the run it is accepting iff every hot state is followed by a cold
state; i.e., cold states occur infinitely often.

In order to present the semantics of M, we translate it into a Biichi automaton
over infinite words [21,4], which we denote by B(M); see Fig. 3. Specifically, we
let B(M) = (3,9, 50, A, F), where X is the alphabet of B(M), S := SU{T} are



160 D. Harel and A. Kantor

(2\R) \{a, b}

—

(Z\R) \{a, b}
=
Fig. 3. Translation of an MSS into a Biichi automaton

its states, and sq is the initial state. F':= C' U {T} is the set of accepting states
of B(M), and its transition relation A is given by

A= — U {(s,e,8):s€ 85, ecl(s)}
U {(s,e,T):s€C,ecV(s)}
U{(T,e,TY:eeX} .

The language of M, denoted by £L(M) = L(B(M)) C 2¥, is taken to be the
language accepted by the automaton B(M); i.e., consisting of the infinite words
a € ¥ on which there exists an accepting run of B(M). From this translation
we see that runs that enter a cold (hot) dead-end state s are accepted (rejected).
So these simple constructs are essentially ‘accept’ and ‘reject’, respectively. The
result of translating MSS 4 (originating from LSC4) is depicted in Fig. 4.

The difference between MSS and Biichi automata lies in the semantics of
disabled events. In MSS, if a disabled event occurs at state s, it is either indif-
ferent or violating, and in the latter case it yields either acceptance or rejection
of the run, according to the temperature of s. In contrast, in Biichi automata
disabled events are always rejecting in both accepting and non-accepting states.
We believe that the duality of hot and cold states in MSS, and the existence of
indifferent events, is natural for specifying modal scenarios.

Different values of the set R of restricted events yield different semantical
variants. When R = 3, we term the MSS immediate, and any disabled event
is violating, so transitions are to be taken immediately (if taken at all). If R
is exactly the set of events appearing in the transition relation —, the MSS is
termed strict [16,14]. When R = (), no events are restricted, and the MSS is
termed tolerant, or weak [16,14]. In this case, all disabled events are indifferent
(unless the state is dead-end), and leave the scenario in the same state.

Given a Biichi automaton B over alphabet X, we can translate it into an MSS
Mg over X, in which the set R of restricted events is arbitrary. In this reverse
translation we turn every accepting (resp. non-accepting) state ¢ of B into a
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R\{el}

Fig. 4. Biichi automaton obtained from MSS 4

cold (resp. hot) state, and add transitions 3 \ E(g) leading to a ‘reject’ state (an
additional hot state with no outgoing transitions). This translation is depicted
in Fig. 5. Note that Mg has no disabled events — all events at any state (except
for the ‘reject’ state) are enabled — so Mg acts just like a Biichi automaton.
From this we see that given a finite alphabet ¥ and any set of restricted events
R C X, MSSs over ¥ and R are just as expressive as Biichi automata (i.e., they
yield the w-regular languages), and translations are simple. Immediate, strict
and weak semantics are all equivalent in this general context of MSS.

4 Universality and Iteration

The semantics suggested for MSS is initial, in the sense that the prescribed
behavior is checked to hold starting from the beginning of a trace (cf. [3,17]).
The language defined above corresponds to this initial interpretation of M, and
is now denoted £™*(M) = L(M). However, scenarios prescribed by universal
LSCs are usually interpreted as invariants. This means that in order for a trace
«a € 3¢ to be accepted, it must conform to the scenario from any point on.

This universal semantics may be defined for MSS as follows. Denote by «/i
the infinite word obtained from o with the first ¢ letters truncated (i € w). The
universal language of MSS M is defined by

LUM) = {a €S View, afi e LM(M)} .
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Z\{a, b}
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Fig. 5. Translation of a Biichi automaton into an MSS

Alternatively, we may construct an alternating Biichi automaton [20,18]
from M, denoted B""V(M), which yields this universal language directly
(cf. [13]). It is obtained from B(M) by adding to each transition leaving the
initial state a conjunction with a transition to the initial state. A translation
of this alternating automaton into a non-alternating one (and thus also into an
MSS with initial semantics) is possible, but prolix [7,20].

A possible alternative to universality is an iterative semantics for MSS (cf. [3]).
In this interpretation, similarly to initial semantics, we need only follow a single
copy of the MSS at any point during the trace (except for non-deterministic
transitions). However, if the scenario is completed (i.e., a cold violation occurs)
the MSS starts over from its initial state, and needs to hold again from this
point on. The event that caused the completion is not skipped; it is reconsidered
at the initial state. Iterative semantics is more permissive than universal, as
the scenario is checked to hold only from certain points on (the beginning, and
points of completion). It is, however, more restrictive than initial semantics. More
formally, £'Y(M) C Liter(M) C LM M). When following a trace from the
beginning, it may reside in any of the states of M. In contrast to universality,
there are no ‘overlapping’ configurations that correspond to different starting
points of M along the trace. This suggests that iterative semantics may be
easier to grasp and use in certain contexts. Moreover, in the context of LSC
play-out [14] for instance, iterative semantics may yield more efficient executions,
since only one copy of LSC is needed.

We present iterative semantics of M by translation into a Biichi automa-
ton, denoted B°T(M); see Fig. 6. The automaton is defined by Bi***'(M) =
(3,8, 80,4, F), where ¥ is the alphabet of B!**(M), S are its states, and sg
is the initial state. The set of accepting states is F' := C, and the transition
relation A is given by
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(E\R)\{a,b} (R\{a,b}) \En (s0)

R\{a,b})NEn(s0)
if s0 cold

if sO hot
(Z\R) \{a, b}

%(R\(a,b))nawm(so)

(Z\R)\{a, b}

=
a/ b a

Fig. 6. Translation of an MSS with iterative interpretation into a Biichi automaton

s,e,8):s€ 8, eels)}

{(
{(s,e,q) : s € C, e € V(s)NE(sp), q € S, sogq}
{(s,e,s0) :s€C,ecV(s)NI(so)}
{(s,e,s0) : 5 €C,e € V(s)NV(sg), s0 € C}! .

For M we define the iterative language L£1**(M) = L(B*"(M)) C =¥, to
be the language accepted by the automaton Bi°*(M). From the definition of
BT (M) we see that a hot dead-end state s is essentially ‘reject’, as all runs
that enter it are rejected. Regarding a cold dead-end state s, it is equivalent in
BT (M) to the initial state (except possibly being accepting, as so may be hot).
This essentially means “accept and continue with the next iteration”. The result
of translating MSS 4 with the iterative interpretation into a Biichi automaton is
depicted in Fig. 7.

Any Biichi automaton may be translated into an MSS with iterative inter-
pretation (in which the set R of restricted events is arbitrary). Actually, the
same translation into initial MSS works here too. From this we see that given

! This part of A is empty if so is hot.
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Fig. 7. Biichi automaton obtained from MSS 4 with iterative interpretation

a finite alphabet ¥ and R C 3 any set of restricted events, iterative MSS over
> and R are just as expressive as Biichi automata over X; i.e., they yield the
w-regular languages. Immediate, strict and weak semantics are all equivalent in
this context as well.

5 Patterns in MSS

Extended patterns are available in LSC through advanced constructs [13,14],
which extend the syntax and the basic partial-order semantics of LSC. MSS
allow the abstract specification of such patterns with only few primitive notions.
Note that in the context of MSS we do not consider conditions or guards that
constrain the state of the system.

Alternatives and breaks in the progress of modal scenarios are inherent in
MSS through a multitude of transitions originating from a state, including non-
deterministic ones. Unbounded loops are also easy to specify. Figure 8 shows a
loop and a break escaping from it.

6 Shortcomings of MSS and Future Work

Bounded loops are not explicitly supported in MSS. They may be modeled by
unraveling them into finite segments of the scenario. Additionally, in MSS one
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Fig. 8. Loop and break

needs to specify the transitions of each state separately. In many situations, how-
ever, taking a single transition should cause only a partial change in the required
behavior. Consider for instance the LSC of Fig. 1 after e3 occurs. There are two
events that must take place — e4 and e5. After e4 occurs, es is still required to
occur, but ey4 is not. The required behavior changed, but only partially. In MSS
this needs to be specified accordingly in each state separately; see Fig. 2. This
independence of states in MSS yields additional expressive power, but it affects
the ease of use of this formalism in such cases.

In Petri nets [24,22] transitions cause only partial, local, change in the global
state. This principle traditionally suggests interpretations like concurrency and
distribution. In another piece of work [12], we consider a multi-modal extension
of Petri nets as a flexible and expressive means to specifying modal scenarios.
We introduce modalities into labeled Petri nets by assigning each transition a
temperature, either hot or cold. Now, a marking (i.e., the global state of the
net) is hot (unstable) if there is an enabled hot transition, and otherwise it is
cold (stable). Into this new setting we then incorporate other notions related to
temperature, such as hot and cold violations. Moreover, a unification principle is
introduced, through which firings of few enabled transitions, which are labeled
with the same event, are identified.

The definitions we presented for the semantics of MSS do not relate specifi-
cally to an interaction between an open system and its environment. In an open
system, the system and its environment are regarded as adversaries (see [23,9]).
This issue is treated in the context of LSC through the definition of its opera-
tional semantics (namely, play-out [14] and its extensions). Another treatment
appears in [2,1]; it involves not only distinguishing system events from environ-
ment events, but also expresses the semantics of LSC by dividing it into safety
and liveness. Extending the semantics of MSS to relate explicitly to open-systems
in a general and natural way is an interesting topic for future research. In this
context, one may discuss the execution of such abstract scenarios.
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We note that MSS should not be confused with modal transition systems
(MTS) [19], which carry a different kind of modality; essentially that of be-
ing partially defined. The latter is related to incomplete information about the
transitions of the system during modeling phases [6], and to the analysis of prop-
erties [8]. Roughly, some of the transitions are marked as provisional, and may
be retained or removed in a sequence of refinements that continues until no pro-
visional transitions remain. In MSS, in contrast, modality is attached to states,
and its interpretation is of a different nature.
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